Arbeitspapier
Asymmetric Nash Solutions in the River Sharing Problem
We study multiple agents along a general river structure that is expressed by a geography matrix and who have access to limited local resources, quasi-linear preferences over water and money and cost functions dependent upon river inflow and own extraction. Unanimity bargaining determines the water allocation and monetary transfers. We translate International Water Law into either disagreement outcomes or individual aspiration levels. In the former case, we apply the asymmetric Nash bargaining solution, in the latter case the agents have to compromise in order to agree and we apply the asymmetric Nash rationing solution. In both cases the optimization problem is separable into two subproblems: the efficient water allocation that maximizes utilitarian welfare given the geography matrix; and the determination of the monetary transfers associated with the weights. We show that the Nash rationing solution may result in nonparticipation, therefore we generalize to the case with participation constraints.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 13-051/II
- Klassifikation
-
Wirtschaft
Game Theory and Bargaining Theory: General
Welfare Economics: General
Air Pollution; Water Pollution; Noise; Hazardous Waste; Solid Waste; Recycling
- Thema
-
River Basin Management
International Water Law
Negotiations
Externalities
Political Economy of Property Rights
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Houba, Harold
van der Laan, Gerard
Zeng, Yuyu
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2013
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Houba, Harold
- van der Laan, Gerard
- Zeng, Yuyu
- Tinbergen Institute
Entstanden
- 2013