Artikel
Nash Equilibria and Bargaining Solutions of Differential Bilinear Games
This paper is devoted to a theoretical and numerical investigation of Nash equilibria and Nash bargaining problems governed by bilinear (input-affine) differential models. These systems with a bilinear state-control structure arise in many applications in, e.g., biology, economics, physics, where competition between different species, agents, and forces needs to be modelled. For this purpose, the concept of Nash equilibria (NE) appears appropriate, and the building blocks of the resulting differential Nash games are different control functions associated with different players that pursue different non-cooperative objectives. In this framework, existence of Nash equilibria is proved and computed with a semi-smooth Newton scheme combined with a relaxation method. Further, a related Nash bargaining (NB) problem is discussed. This aims at determining an improvement of all players’ objectives with respect to the Nash equilibria. Results of numerical experiments successfully demonstrate the effectiveness of the proposed NE and NB computational framework.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Dynamic Games and Applications ; ISSN: 2153-0793 ; Volume: 11 ; Year: 2020 ; Issue: 1 ; Pages: 1-28 ; New York, NY: Springer US
- Klassifikation
-
Wirtschaft
Economics of Minorities, Races, Indigenous Peoples, and Immigrants; Non-labor Discrimination
Economic History: Transport, International and Domestic Trade, Energy, Technology, and Other Services: General, International, or Comparative
IT Management
Energy: Demand and Supply; Prices
- Thema
-
Bilinear evolution models
Nash equilibria
Nash bargaining problem
Optimal control theory
Quantum evolution models
Lotka–Volterra models
Newton methods
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Calà Campana, Francesca
Ciaramella, Gabriele
Borzì, Alfio
- Ereignis
-
Veröffentlichung
- (wer)
-
Springer US
- (wo)
-
New York, NY
- (wann)
-
2020
- DOI
-
doi:10.1007/s13235-020-00351-2
- Letzte Aktualisierung
- 10.03.2025, 11:45 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Calà Campana, Francesca
- Ciaramella, Gabriele
- Borzì, Alfio
- Springer US
Entstanden
- 2020