Arbeitspapier
Fast Efficient Importance Sampling by State Space Methods
We show that efficient importance sampling for nonlinear non-Gaussian state space models can be implemented by computationally efficient Kalman filter and smoothing methods. The result provides some new insights but it primarily leads to a simple and fast method for efficient importance sampling. A simulation study and empirical illustration provide some evidence of the computational gains.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 12-008/4
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Monte Carlo maximum likelihood
Simulation smoothing
Zustandsraummodell
Maximum-Likelihood-Methode
Monte-Carlo-Methode
Simulation
Theorie
Nguyen, Thuy Minh
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:23 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Koopman, Siem Jan
- Nguyen, Thuy Minh
- Tinbergen Institute
Entstanden
- 2012