Arbeitspapier

Fast Efficient Importance Sampling by State Space Methods

We show that efficient importance sampling for nonlinear non-Gaussian state space models can be implemented by computationally efficient Kalman filter and smoothing methods. The result provides some new insights but it primarily leads to a simple and fast method for efficient importance sampling. A simulation study and empirical illustration provide some evidence of the computational gains.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 12-008/4

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Subject
Kalman filter
Monte Carlo maximum likelihood
Simulation smoothing
Zustandsraummodell
Maximum-Likelihood-Methode
Monte-Carlo-Methode
Simulation
Theorie

Event
Geistige Schöpfung
(who)
Koopman, Siem Jan
Nguyen, Thuy Minh
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2012

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Koopman, Siem Jan
  • Nguyen, Thuy Minh
  • Tinbergen Institute

Time of origin

  • 2012

Other Objects (12)