Arbeitspapier
Numerically Accelerated Importance Sampling for Nonlinear Non-Gaussian State Space Models
We introduce a new efficient importance sampler for nonlinear non-Gaussian state space models. We propose a general and efficient likelihood evaluation method for this class of models via the combination of numerical and Monte Carlo integration methods. Our methodology explores the idea that only a small part of the likelihood evaluation problem requires simulation. We refer to our new method as numerically accelerated importance sampling. The method is computationally and numerically efficient, facilitates parameter estimation for models with high-dimensional state vectors, and overcomes a bias-variance trade-off encountered by other sampling methods. An elaborate simulation study and an empirical application for U.S. stock returns reveal large efficiency gains for a range of models used in financial econometrics.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 11-057/4
- Klassifikation
-
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- Thema
-
State space models
importance sampling
simulated maximum likelihood
stochastic volatility
stochastic copula
stochastic conditional duration
Zustandsraummodell
Maximum-Likelihood-Methode
Stochastischer Prozess
Volatilität
Kopula (Mathematik)
Monte-Carlo-Methode
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Koopman, Siem Jan
Lucas, Andre
Scharth, Marcel
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2011
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:41 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Koopman, Siem Jan
- Lucas, Andre
- Scharth, Marcel
- Tinbergen Institute
Entstanden
- 2011