Arbeitspapier

Joint Independent Metropolis-Hastings Methods for Nonlinear Non-Gaussian State Space Models

We propose a new methodology for the Bayesian analysis of nonlinear non-Gaussian state space models with a Gaussian time-varying signal, where the signal is a function of a possibly high-dimensional state vector. The novelty of our approach is the development of proposal densities for the joint posterior density of parameter and state vectors: a mixture of Student's t-densities as the marginal proposal density for the parameter vector, and a Gaussian density as the conditional proposal density for the signal given the parameter vector. We argue that a highly efficient procedure emerges when these proposal densities are used in an independent Metropolis-Hastings algorithm. A particular feature of our approach is that smoothed estimates of the states and an estimate of the marginal likelihood are obtained directly as an output of the algorithm. Our methods are computationally efficient and produce more accurate estimates when compared to recently proposed alternativ es. We present extensive simulation evidence for stochastic volatility and stochastic intensity models. For our empirical study, we analyse the performance of our method for stock return data and corporate default panel data.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 13-050/III

Klassifikation
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
Thema
nonlinear non-Gaussian state space model
Bayesian inference
Monte Carlo estimation
Metropolis-Hastings algorithm
mixture of Student's t-distributions

Ereignis
Geistige Schöpfung
(wer)
Barra, Istvan
Hoogerheide, Lennart
Koopman, Siem Jan
Lucas, Andre
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2012

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Barra, Istvan
  • Hoogerheide, Lennart
  • Koopman, Siem Jan
  • Lucas, Andre
  • Tinbergen Institute

Entstanden

  • 2012

Ähnliche Objekte (12)