Arbeitspapier

Likelihood-based Analysis for Dynamic Factor Models

We present new results for the likelihood-based analysis of the dynamic factor model that possibly includes intercepts and explanatory variables. The latent factors are modelled by stochastic processes. The idiosyncratic disturbances are specified as autoregressive processes with mutually correlated innovations. The new results lead to computationally efficient procedures for the estimation of the factors and parameter estimation by maximum likelihood and Bayesian methods. An illustration is provided for the analysis of a large panel of macroeconomic time series.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 08-007/4

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Index Numbers and Aggregation; Leading indicators
Thema
EM algorithm
Kalman Filter
Forecasting
Latent Factors
Markov chain Monte Carlo
Principal Components
State Space
Maximum-Likelihood-Methode
Faktorenanalyse
Zustandsraummodell
Monte-Carlo-Methode
Markovscher Prozess
Theorie

Ereignis
Geistige Schöpfung
(wer)
Jungbacker, Borus
Koopman, Siem Jan
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2008

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Jungbacker, Borus
  • Koopman, Siem Jan
  • Tinbergen Institute

Entstanden

  • 2008

Ähnliche Objekte (12)