Arbeitspapier

Likelihood-based Analysis for Dynamic Factor Models

We present new results for the likelihood-based analysis of the dynamic factor model that possibly includes intercepts and explanatory variables. The latent factors are modelled by stochastic processes. The idiosyncratic disturbances are specified as autoregressive processes with mutually correlated innovations. The new results lead to computationally efficient procedures for the estimation of the factors and parameter estimation by maximum likelihood and Bayesian methods. An illustration is provided for the analysis of a large panel of macroeconomic time series.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 08-007/4

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Index Numbers and Aggregation; Leading indicators
Subject
EM algorithm
Kalman Filter
Forecasting
Latent Factors
Markov chain Monte Carlo
Principal Components
State Space
Maximum-Likelihood-Methode
Faktorenanalyse
Zustandsraummodell
Monte-Carlo-Methode
Markovscher Prozess
Theorie

Event
Geistige Schöpfung
(who)
Jungbacker, Borus
Koopman, Siem Jan
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2008

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Jungbacker, Borus
  • Koopman, Siem Jan
  • Tinbergen Institute

Time of origin

  • 2008

Other Objects (12)