Arbeitspapier

Empirical Bayes Methods for Dynamic Factor Models

We consider the dynamic factor model where the loading matrix, the dynamic factors and the disturbances are treated as latent stochastic processes. We present empirical Bayes methods that enable the efficient shrinkage-based estimation of the loadings and the factors. We show that our estimates have lower quadratic loss compared to the standard maximum likelihood estimates. We investigate the methods in a Monte Carlo study where we document the finite sample properties. Finally, we present and discuss the results of an empirical study concerning the forecasting of U.S. macroeconomic time series using our empirical Bayes methods.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 14-061/III

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Index Numbers and Aggregation; Leading indicators
Subject
Importance sampling
Kalman filtering
Likelihood-based analysis
Posterior modes
Rao-Blackwellization
Shrinkage

Event
Geistige Schöpfung
(who)
Koopman, Siem Jan
Mesters, Geert
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2014

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Koopman, Siem Jan
  • Mesters, Geert
  • Tinbergen Institute

Time of origin

  • 2014

Other Objects (12)