Arbeitspapier

Empirical Bayes Methods for Dynamic Factor Models

We consider the dynamic factor model where the loading matrix, the dynamic factors and the disturbances are treated as latent stochastic processes. We present empirical Bayes methods that enable the efficient shrinkage-based estimation of the loadings and the factors. We show that our estimates have lower quadratic loss compared to the standard maximum likelihood estimates. We investigate the methods in a Monte Carlo study where we document the finite sample properties. Finally, we present and discuss the results of an empirical study concerning the forecasting of U.S. macroeconomic time series using our empirical Bayes methods.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 14-061/III

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Index Numbers and Aggregation; Leading indicators
Thema
Importance sampling
Kalman filtering
Likelihood-based analysis
Posterior modes
Rao-Blackwellization
Shrinkage

Ereignis
Geistige Schöpfung
(wer)
Koopman, Siem Jan
Mesters, Geert
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2014

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Koopman, Siem Jan
  • Mesters, Geert
  • Tinbergen Institute

Entstanden

  • 2014

Ähnliche Objekte (12)