Arbeitspapier
Empirical Bayes Methods for Dynamic Factor Models
We consider the dynamic factor model where the loading matrix, the dynamic factors and the disturbances are treated as latent stochastic processes. We present empirical Bayes methods that enable the efficient shrinkage-based estimation of the loadings and the factors. We show that our estimates have lower quadratic loss compared to the standard maximum likelihood estimates. We investigate the methods in a Monte Carlo study where we document the finite sample properties. Finally, we present and discuss the results of an empirical study concerning the forecasting of U.S. macroeconomic time series using our empirical Bayes methods.
- Language
-
Englisch
- Bibliographic citation
-
Series: Tinbergen Institute Discussion Paper ; No. 14-061/III
- Classification
-
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Index Numbers and Aggregation; Leading indicators
- Subject
-
Importance sampling
Kalman filtering
Likelihood-based analysis
Posterior modes
Rao-Blackwellization
Shrinkage
- Event
-
Geistige Schöpfung
- (who)
-
Koopman, Siem Jan
Mesters, Geert
- Event
-
Veröffentlichung
- (who)
-
Tinbergen Institute
- (where)
-
Amsterdam and Rotterdam
- (when)
-
2014
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Koopman, Siem Jan
- Mesters, Geert
- Tinbergen Institute
Time of origin
- 2014