Arbeitspapier

On Importance Sampling for State Space Models

We consider likelihood inference and state estimation by means of importance sampling for state space models with a nonlinear non-Gaussian observation y ~ p(y|alpha) and a linear Gaussian state alpha ~ p(alpha). The importance density is chosen to be the Laplace approximation of the smoothing density p(alpha|y). We show that computationally efficient state space methods can be used to perform all necessary computations in all situations. It requires new derivations of the Kalman filter and smoother and the simulation smoother which do not rely on a linear Gaussian observation equation. Furthermore, results are presented that lead to a more effective implementation of importance sampling for state space models. An illustration is given for the stochastic volatility model with leverage.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 05-117/4

Klassifikation
Wirtschaft
Statistical Simulation Methods: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Thema
Kalman filter
Likelihood function
Monte Carlo integration
Newton-Raphson
Posterior mode estimation
Simulation smoothing
Stochastic volatility model

Ereignis
Geistige Schöpfung
(wer)
Jungbacker, Borus
Koopman, Siem Jan
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2005

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Jungbacker, Borus
  • Koopman, Siem Jan
  • Tinbergen Institute

Entstanden

  • 2005

Ähnliche Objekte (12)