Arbeitspapier

On the u-th Geometric Conditional Quantile

Motivated by Chaudhuri's work (1996) on unconditional geometric quantiles, we explore the asymptotic properties of sample geometric conditional quantiles, defined through kernel functions, in high dimensional spaces. We establish a Bahadur type linear representation for the geometric conditional quantile estimator and obtain the convergence rate for the corresponding remainder term. From this, asymptotic normality on the estimated geometric conditional quantile is derived. Based on these results we propose confidence ellipsoids for multivariate conditional quantiles. The methodology is illustrated via data analysis and a Monte Carlo study.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 04-072/4

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Subject
Asymptotic normality
Bahadur representation
geometric conditional quantile
confidence ellipsoids
kernel function
Nichtparametrisches Verfahren
Theorie

Event
Geistige Schöpfung
(who)
Cheng, Yebin
de Gooijer, Jan G.
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2004

Handle
Last update
10.03.2025, 11:44 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Cheng, Yebin
  • de Gooijer, Jan G.
  • Tinbergen Institute

Time of origin

  • 2004

Other Objects (12)