Arbeitspapier

Quantile Forecasting for Credit Risk Management using possibly Mis-specified Hidden Markov Models

Recent models for credit risk management make use of Hidden Markov Models (HMMs). The HMMs are used to forecast quantiles of corporate default rates. Little research has been done on the quality of such forecasts if the underlying HMM is potentially mis-specified. In this paper, we focus on mis-specification in the dynamics and the dimension of the HMM. We consider both discrete and continuous state HMMs. The differences are substantial. Underestimating the number of discrete states has an economically significant impact on forecast quality. Generally speaking, discrete models underestimate the high-quantile default rate forecasts. Continuous state HMMs, however, vastly overestimate high quantiles if the true HMM has a discrete state space. In the reverse setting, the biases are much smaller, though still substantial in economic terms. We illustrate the empirical differences using U.S. default data.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 07-046/2

Klassifikation
Wirtschaft
Forecasting Models; Simulation Methods
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill
Thema
defaults
Markov switching
misspecification
quantile forecast
Expectation-Maximization
simulated maximum likelihood
importance sampling
Kreditrisiko
Risikomanagement
Markovscher Prozess
Modellierung
Maximum-Likelihood-Methode
Schätztheorie

Ereignis
Geistige Schöpfung
(wer)
Banachewicz, Konrad
Lucas, André
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2007

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Banachewicz, Konrad
  • Lucas, André
  • Tinbergen Institute

Entstanden

  • 2007

Ähnliche Objekte (12)