Arbeitspapier

Kernel-Smoothed Conditional Quantiles of Correlated Bivariate Discrete Data

Often socio-economic variables are measured on a discrete scale or rounded to protect confidentiality. Nevertheless, when exploring the effect of a relevant covariate on the whole outcome distribution of a discrete response variable, virtually all common quantile regression methods require the distribution of the covariate to be continuous. This paper departs from this basic requirement by presenting an algorithm for nonparametric estimation of conditional quantiles when both the response variable and the covariate are discretely distributed. Moreover, we allow the variables of interest to be pairwise correlated. For computational efficiency, we aggregate the data into smaller subsets by a binning operation, and make inference on the resulting prebinned data. Specifically, we propose two kernel-based binned conditional quantile estimators, one for untransformed discrete response data and one for rank-transformed response data. We establish asymptotic properties of both estimators. A practical procedure for jointly selecting band- and binwidth parameters is also presented. Simulation results show excellent estimation accuracy in terms of bias, mean squared error, and confidence interval coverage. Typically prebinning the data leads to considerable computational savings when large datasets are under study, as compared to direct (un)conditional quantile kernel estimation of multivariate data. With this in mind, we illustrate the proposed methodology with an application to a large real dataset concerning US hospital patients with congestive heart failure.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 11-011/4

Klassifikation
Wirtschaft
Semiparametric and Nonparametric Methods: General
Thema
Binning
Bootstrap
Confidence interval
Jittering
Nonparametric
Bootstrap-Verfahren
Nichtparametrisches Verfahren
Theorie

Ereignis
Geistige Schöpfung
(wer)
de Gooijer, Jan G.
Yuan, Ao
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2011

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • de Gooijer, Jan G.
  • Yuan, Ao
  • Tinbergen Institute

Entstanden

  • 2011

Ähnliche Objekte (12)