Arbeitspapier
Kernel-Smoothed Conditional Quantiles of Correlated Bivariate Discrete Data
Often socio-economic variables are measured on a discrete scale or rounded to protect confidentiality. Nevertheless, when exploring the effect of a relevant covariate on the whole outcome distribution of a discrete response variable, virtually all common quantile regression methods require the distribution of the covariate to be continuous. This paper departs from this basic requirement by presenting an algorithm for nonparametric estimation of conditional quantiles when both the response variable and the covariate are discretely distributed. Moreover, we allow the variables of interest to be pairwise correlated. For computational efficiency, we aggregate the data into smaller subsets by a binning operation, and make inference on the resulting prebinned data. Specifically, we propose two kernel-based binned conditional quantile estimators, one for untransformed discrete response data and one for rank-transformed response data. We establish asymptotic properties of both estimators. A practical procedure for jointly selecting band- and binwidth parameters is also presented. Simulation results show excellent estimation accuracy in terms of bias, mean squared error, and confidence interval coverage. Typically prebinning the data leads to considerable computational savings when large datasets are under study, as compared to direct (un)conditional quantile kernel estimation of multivariate data. With this in mind, we illustrate the proposed methodology with an application to a large real dataset concerning US hospital patients with congestive heart failure.
- Sprache
-
Englisch
- Erschienen in
-
Series: Tinbergen Institute Discussion Paper ; No. 11-011/4
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
- Thema
-
Binning
Bootstrap
Confidence interval
Jittering
Nonparametric
Bootstrap-Verfahren
Nichtparametrisches Verfahren
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
de Gooijer, Jan G.
Yuan, Ao
- Ereignis
-
Veröffentlichung
- (wer)
-
Tinbergen Institute
- (wo)
-
Amsterdam and Rotterdam
- (wann)
-
2011
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- de Gooijer, Jan G.
- Yuan, Ao
- Tinbergen Institute
Entstanden
- 2011