Arbeitspapier
Nonparametric estimates for conditional quantiles of time series
We consider the problem of estimating the conditional quantile of a time series fYtg at time t given covariates Xt, where Xt can ei- ther exogenous variables or lagged variables of Yt . The conditional quantile is estimated by inverting a kernel estimate of the conditional distribution function, and we prove its asymptotic normality and uni- form strong consistency. The performance of the estimate for light and heavy-tailed distributions of the innovations are evaluated by a simulation study. Finally, the technique is applied to estimate VaR of stocks in DAX, and its performance is compared with the existing standard methods using backtesting.
- Language
-
Englisch
- Bibliographic citation
-
Series: SFB 649 Discussion Paper ; No. 2014-012
- Classification
-
Wirtschaft
Mathematical and Quantitative Methods: General
Semiparametric and Nonparametric Methods: General
Econometric Modeling: General
Financial Econometrics
- Subject
-
Conditional quantile
kernel estimate
quantile autoregression
time series
uniform consistency
value-at-risk
- Event
-
Geistige Schöpfung
- (who)
-
Franke, Jürgen
Mwita, Peter
Wang, Weining
- Event
-
Veröffentlichung
- (who)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (where)
-
Berlin
- (when)
-
2014
- Handle
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Franke, Jürgen
- Mwita, Peter
- Wang, Weining
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Time of origin
- 2014