Arbeitspapier

Multivariate quantile regression using superlevel sets of conditional densities

In multiple-output quantile regression the simultaneous study of multiple response variables requires multivariate quantiles. Current definitions of such quantiles often lack a clear probability interpretation, as the defined quantiles can cover large parts of the distribution where little probability mass is located or their enclosed area does not equal the quantile level. We suggest superlevel-sets of conditional multivariate density functions as an alternative multivariate quantile definition. Such a quantile set contains all points in the domain for which the density exceeds a certain level. By applying this to a conditional density, the quantile becomes a function of the conditioning variables. We show that such a quantile has favorable mathematical and intuitive features. For implementation, we, first, use an overfitted Gaussian mixture model to fit the multivariate density and, next, calculate the multivariate quantile for a conditional or marginal density of interest. Operating on the same estimated multivariate density guarantees logically consistent quantiles. In particular, the quantiles at multiple percentiles are non-crossing. We use simulation to demonstrate that we recover the true quantiles for distributions with correlation, heteroskedasticity, or asymmetry in the disturbances and we apply our method to study heterogeneity in household expenditures.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. TI 2022-094/III

Klassifikation
Wirtschaft
Thema
Multiple Response
Bayesian Quantile Regression
Gaussian Mixture Model

Ereignis
Geistige Schöpfung
(wer)
Camehl, Annika
Fok, Dennis
Gruber, Kathrin
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2022

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Camehl, Annika
  • Fok, Dennis
  • Gruber, Kathrin
  • Tinbergen Institute

Entstanden

  • 2022

Ähnliche Objekte (12)