Arbeitspapier
Sparse quantile regression
We consider both l0-penalized and l0-constrained quantile regression estimators. For the l0-penalized estimator, we derive an exponential inequality on the tail probability of excess quantile prediction risk and apply it to obtain non-asymptotic upper bounds on the mean-square parameter and regression function estimation errors. We also derive analogous results for the l0-constrained estimator. The resulting rates of convergence are minimax-optimal and the same as those for l1-penalized estimators. Further, we characterize expected Hamming loss for the l0-penalized estimator. We implement the proposed procedure via mixed integer linear programming and also a more scalable first-order approximation algorithm. We illustrate the finite-sample performance of our approach in Monte Carlo experiments and its usefulness in a real data application concerning conformal prediction of infant birth weights (with n ≈ 10 to the 3rd and up to p > 10 to the 3rd ). In sum, our l0-based method produces a much sparser estimator than the l1-penalized approach without compromising precision.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP30/20
- Klassifikation
-
Wirtschaft
- Thema
-
quantile regression
sparse estimation
mixed integer optimization
finitesample property
conformal prediction
Hamming distance
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Chen, Le-Yu
Lee, Sokbae
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2020
- DOI
-
doi:10.1920/wp.cem.2020.3020
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:22 MESZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Chen, Le-Yu
- Lee, Sokbae
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2020