Arbeitspapier

Factorisable Multitask Quantile Regression

A multivariate quantile regression model with a factor structure is proposed to study data with many responses of interest. The factor structure is allowed to vary with the quantile levels, which makes our framework more flexible than the classical factor models. The model is estimated with the nuclear norm regularization in order to accommodate the high dimensionality of data, but the incurred optimization problem can only be efficiently solved in an approximate manner by off-the-shelf optimization methods. Such a scenario is often seen when the empirical risk is non-smooth or the numerical procedure involves expensive subroutines such as singular value decompo- sition. To ensure that the approximate estimator accurately estimates the model, non-asymptotic bounds on error of the the approximate estimator is established. For implementation, a numerical procedure that provably marginalizes the approximate error is proposed. The merits of our model and the proposed numerical procedures are demonstrated through Monte Carlo experiments and an application to finance involving a large pool of asset returns.

Sprache
Englisch

Erschienen in
Series: IRTG 1792 Discussion Paper ; No. 2020-004

Klassifikation
Wirtschaft
Estimation: General
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Optimization Techniques; Programming Models; Dynamic Analysis
Financial Forecasting and Simulation
Thema
Factor model
quantile regression
non-asymptotic analysis
multivariate regression
nuclear norm regularization

Ereignis
Geistige Schöpfung
(wer)
Chao, Shih-Kang
Härdle, Wolfgang Karl
Yuan, Ming
Ereignis
Veröffentlichung
(wer)
Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"
(wo)
Berlin
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chao, Shih-Kang
  • Härdle, Wolfgang Karl
  • Yuan, Ming
  • Humboldt-Universität zu Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series"

Entstanden

  • 2020

Ähnliche Objekte (12)