Arbeitspapier
Geometric construction of optimal designs for dose-responsemodels with two parameters
In dose-response studies, the dose range is often restricted due to concerns over drug toxicity and/or efficacy. We derive optimal designs for estimating the underlying dose-response curve for a restricted or unrestricted dose range with respect to a broad class of optimality criteria. The underlying curve belongs to a diversified set of link functions suitable for the dose response studies and having a common canonical form. These include the fundamental binary response models – the logit and the probit as well as the skewed versions of these models. Our methodology is based on a new geometric interpretation of optimal designs with respect to Kiefer?s [Omega]p-criteria in regression models with two parameters, which is of independent interest. It provides an intuitive illustration of the number and locations of the support points of [Omega]p-optimal designs. Moreover, the geometric results generalize the classical characterization of D-optimal designs by the minimum covering ellipsoid [see Silvey (1972) or Sibson (1972)] to the class of Kiefer?s [Omega]p-criteria. The results are illustrated through the re-design of a dose ranging trial.
- Sprache
-
Englisch
- Erschienen in
-
Series: Technical Report ; No. 2005,08
- Thema
-
Binary response model
Dose ranging
Dose-response
Dual problem
Link function
Locally compound optimal design
Minimum ellipse
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Dette, Holger
Biedermann, Stefanie
Zhu, Wei
- Ereignis
-
Veröffentlichung
- (wer)
-
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
- (wo)
-
Dortmund
- (wann)
-
2005
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Dette, Holger
- Biedermann, Stefanie
- Zhu, Wei
- Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
Entstanden
- 2005