Arbeitspapier

Geometric construction of optimal designs for dose-responsemodels with two parameters

In dose-response studies, the dose range is often restricted due to concerns over drug toxicity and/or efficacy. We derive optimal designs for estimating the underlying dose-response curve for a restricted or unrestricted dose range with respect to a broad class of optimality criteria. The underlying curve belongs to a diversified set of link functions suitable for the dose response studies and having a common canonical form. These include the fundamental binary response models – the logit and the probit as well as the skewed versions of these models. Our methodology is based on a new geometric interpretation of optimal designs with respect to Kiefer?s [Omega]p-criteria in regression models with two parameters, which is of independent interest. It provides an intuitive illustration of the number and locations of the support points of [Omega]p-optimal designs. Moreover, the geometric results generalize the classical characterization of D-optimal designs by the minimum covering ellipsoid [see Silvey (1972) or Sibson (1972)] to the class of Kiefer?s [Omega]p-criteria. The results are illustrated through the re-design of a dose ranging trial.

Sprache
Englisch

Erschienen in
Series: Technical Report ; No. 2005,08

Thema
Binary response model
Dose ranging
Dose-response
Dual problem
Link function
Locally compound optimal design
Minimum ellipse

Ereignis
Geistige Schöpfung
(wer)
Dette, Holger
Biedermann, Stefanie
Zhu, Wei
Ereignis
Veröffentlichung
(wer)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(wo)
Dortmund
(wann)
2005

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Dette, Holger
  • Biedermann, Stefanie
  • Zhu, Wei
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Entstanden

  • 2005

Ähnliche Objekte (12)