Arbeitspapier
Optimal designs for estimating the interesting part of a dose-effect curve
We consider a dose-finding trial in phase IIB of drug development. For choosing an appropriate design for this trial the specification of two points is critical: an appropriate model for describing the dose-effect relationship and the specification of the aims of the trial (objectives), which will be the focus in the present paper. For many practical situations it is essential to have a robust trial objective that has little risk of changing during the complete trial due to external information. An important and realistic objective of a dose-finding trial is to obtain precise information about the interesting part of the dose-effect curve. We reflect this goal in a statistical optimality criterion and derive efficient designs using optimal design theory. In particular we determine non-adaptive Bayesian optimal designs, i.e. designs which are not changed by information obtained from an interim analysis. Compared with a traditional balanced design for this trial it is shown that the optimal design is substantially more efficient. This implies either again in information or essential savings in sample size. Further, we investigate an adaptive Bayesian optimal design that uses two different optimal designs before and after an interim analysis, and we compare the adaptive with the non-adaptive Bayesian optimal design. The basic concept is illustrated using a modification of a recent AstraZeneca trial.
- Sprache
-
Englisch
- Erschienen in
-
Series: Technical Report ; No. 2007,21
- Thema
-
adaptive design
Bayesian design
clinical trial
dose-finding
optimal design
interesting part of dose-e?ect curve
prior knowledge
two-stage design
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Miller, Frank
Dette, Holger
Guilbaud, Olivier
- Ereignis
-
Veröffentlichung
- (wer)
-
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
- (wo)
-
Dortmund
- (wann)
-
2007
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Miller, Frank
- Dette, Holger
- Guilbaud, Olivier
- Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
Entstanden
- 2007