Arbeitspapier
Estimating a convex function in nonparametric regression
A new nonparametric estimate of a convex regression function is proposed and its stochastic properties are studied. The method starts with an unconstrained estimate of the derivative of the regression function, which is firstly isotonized and then integrated. We prove asymptotic normality of the new estimate and show that it is first order asymptotically equivalent to the initial unconstrained estimate if the regression function is in fact convex. If convexity is not present the method estimates a convex function whose derivative has the same Lp-norm as the derivative of the (non-convex) underlying regression function. The finite sample properties of the new estimate are investigated by means of a simulation study and the application of the new method is demonstrated in two data examples.
- Sprache
-
Englisch
- Erschienen in
-
Series: Technical Report ; No. 2005,21
- Thema
-
nonparametric regression
order restricted inference
convexity
Nadaraya-Watson estimate
nondecreasing rearrangement
Regression
Nichtparametrisches Verfahren
Schätztheorie
Theorie
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Dette, Holger
Birke, Melanie
- Ereignis
-
Veröffentlichung
- (wer)
-
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
- (wo)
-
Dortmund
- (wann)
-
2005
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:42 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Dette, Holger
- Birke, Melanie
- Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
Entstanden
- 2005