Arbeitspapier

Optimal designs for estimating the slope of a regression

In the common linear regression model we consider the problem of designing experiments for estimating the slope of the expected response in a regression. We discuss locally optimal designs, where the experimenter is only interested in the slope at a particular point, and standardized minimax optimal designs, which could be used if precise estimation of the slope over a given region is required. General results on the number of support points of locally optimal designs are derived if the regression functions form a Chebyshev system. For polynomial regression and Fourier regression models of arbitrary degree the optimal designs for estimating the slope of the regression are determined explicitly for many cases of practical interest.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2008,21

Subject
locally optimal design
standardized minimax optimal design
estimating derivatives
polynomial regression
Fourier regression

Event
Geistige Schöpfung
(who)
Dette, Holger
Melas, Viatcheslav B.
Event
Veröffentlichung
(who)
Technische Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2008

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Dette, Holger
  • Melas, Viatcheslav B.
  • Technische Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2008

Other Objects (12)