Arbeitspapier

Optimal designs for estimating individual coefficients in polynomial regression: A functional approach

In this paper the optimal design problem for the estimation of the individual coefficients in a polynomial regression on an arbitrary interval [a, b] (- inf. < a < b < inf) is considered. Recently, Sahm (2000) demonstrated that the optimal design is one of four types depending on the symmetry parameter s = (a + b) / (a-b) and the specific coefficient which has to be estimated. In the same paper the optimal design was identified explicitly in three cases. It is the basic purpose of the present paper to study the remaining open fourth case. It will be proved that in this case the support points and weights are real analytic functions of the boundary points of the design space. This result is used to provide a Taylor expansion for the weights and support points as functions of the parameters a and b, which can easily be used for the numerical calculation of the optimal designs in all cases, which were not treated by Sahm (2000).

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2001,01

Subject
polynomial regression
c-optimal design
implicit function theorem
extremal polynomial
estimation of individual coefficients

Event
Geistige Schöpfung
(who)
Dette, Holger
Melas, Viatcheslav B.
Pepelyshev, Andrey
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2001

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Dette, Holger
  • Melas, Viatcheslav B.
  • Pepelyshev, Andrey
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2001

Other Objects (12)