Arbeitspapier

Optimal designs for smoothing splines

In the common nonparametric regression model we consider the problem of constructing optimal designs, if the unknown curve is estimated by a smoothing spline. A new basis for the space of natural splines is derived, and the local minimax property for these splines is used to derive two optimality criteria for the construction of optimal designs. The first criterion determines the design for a most precise estimation of the coefficients in the spline representation and corresponds to D-optimality, while the second criterion is the G-criterion and corresponds to an accurate prediction of the curve. Several properties of the optimal designs are derived. In general D- and G-optimal designs are not equivalent. Optimal designs are determined numerically and compared with the uniform design.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2007,27

Subject
smoothing spline
nonparametric regression
D- and G-optimal designs
saturated designs
Nichtparametrisches Verfahren
Regression
Robustes Verfahren
Theorie

Event
Geistige Schöpfung
(who)
Dette, Holger
Melas, Viatcheslav B.
Pepelyshev, Andrey
Event
Veröffentlichung
(who)
Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2007

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Dette, Holger
  • Melas, Viatcheslav B.
  • Pepelyshev, Andrey
  • Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2007

Other Objects (12)