Arbeitspapier

Joint Bayesian Analysis of Parameters and States in Nonlinear, Non-Gaussian State Space Models

We propose a new methodology for designing flexible proposal densities for the joint posterior density of parameters and states in a nonlinear non-Gaussian state space model. We show that a highly efficient Bayesian procedure emerges when these proposal densities are used in an independent Metropolis-Hastings algorithm. A particular feature of our approach is that smoothed estimates of the states and the marginal likelihood are obtained directly as an output of the algorithm. Our method provides a computationally efficient alternative to several recently proposed algorithms. We present extensive simulation evidence for stochastic volatility and stochastic intensity models. For our empirical study, we analyse the performance of our method for stock returns and corporate default panel data. (This paper is an updated version of the paper that appeared earlier as Barra, I., Hoogerheide, L.F., Koopman, S.J., and Lucas, A. (2013) "Joint Independent Metropolis-Hastings Methods for Nonlinear Non-Gaussian State Space Models". TI Discussion Paper 13-050/III. Amsterdam: Tinbergen Institute.)

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 14-118/III

Classification
Wirtschaft
Bayesian Analysis: General
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Financial Econometrics
Subject
Bayesian inference
importance sampling
Monte Carlo estimation
Metropolis-Hastings algorithm
mixture of Student's t-distributions

Event
Geistige Schöpfung
(who)
Barra, István
Hoogerheide, Lennart
Koopman, Siem Jan
Lucas, André
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2014

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Barra, István
  • Hoogerheide, Lennart
  • Koopman, Siem Jan
  • Lucas, André
  • Tinbergen Institute

Time of origin

  • 2014

Other Objects (12)