Arbeitspapier

Optimal Formulations for Nonlinear Autoregressive Processes

We develop optimal formulations for nonlinear autoregressive models by representing them as linear autoregressive models with time-varying temporal dependence coefficients. We propose a parameter updating scheme based on the score of the predictive likelihood function at each time point. The resulting time-varying autoregressive model is formulated as a nonlinear autoregressive model and is compared with threshold and smooth-transition autoregressive models. We establish the information theoretic optimality of the score driven nonlinear autoregressive process and the asymptotic theory for maximum likelihood parameter estimation. The performance of our model in extracting the time-varying or the nonlinear dependence for finite samples is studied in a Monte Carlo exercise. In our empirical study we present the in-sample and out-of-sample performances of our model for a weekly time series of unemployment insurance claims.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 14-103/III

Klassifikation
Wirtschaft
Estimation: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Thema
Asymptotic theory
Dynamic models
Observation driven time series models
Smooth-transition model
Time-Varying Parameters
Treshold autoregressive model

Ereignis
Geistige Schöpfung
(wer)
Blasques, Francisco
Koopman, Siem Jan
Lucas, André
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2014

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Blasques, Francisco
  • Koopman, Siem Jan
  • Lucas, André
  • Tinbergen Institute

Entstanden

  • 2014

Ähnliche Objekte (12)