Arbeitspapier

Quantile uncorrelation and instrumental regressions

We introduce a notion of median uncorrelation that is a natural extension of mean (linear) uncorrelation. A scalar random variable Y is median uncorrelated with a k-dimensional random vector X if and only if the slope from an LAD regression of Y on X is zero. Using this simple definition, we characterize properties of median uncorrelated random variables, and introduce a notion of multivariate median uncorrelation. We provide measures of median uncorrelation that are similar to the linear correlation coefficient and the coefficient of determination. We also extend this median uncorrelation to other loss functions. As two stage least squares exploits mean uncorrelation between an instrument vector and the error to derive consistent estimators for parameters in linear regressions with endogenous regressors, the main result of this paper shows how a median uncorrelation assumption between an instrument vector and the error can similarly be used to derive consistent estimators in these linear models with endogenous regressors. We also show how median uncorrelation can be used in linear panel models with quantile restrictions and in linear models with measurement errors.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP26/10

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Komarova, Tatiana
Severini, Thomas
Tamer, Elie
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2010

DOI
doi:10.1920/wp.cem.2010.2610
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Komarova, Tatiana
  • Severini, Thomas
  • Tamer, Elie
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2010

Ähnliche Objekte (12)