Arbeitspapier
Nonlinear panel data estimation via quantile regressions
We introduce a class of quantile regression estimators for short panels. Our framework covers static and dynamic autoregressive models, models with general predetermined regressors, and models with multiple individual effects. We use quantile regression as a flexible tool to model the relationships between outcomes, covariates, and heterogeneity. We develop an iterative simulation-based approach for estimation, which exploits the computational simplicity of ordinary quantile regression in each iteration step. Finally, an application to measure the effect of smoking during pregnancy on children's birthweights completes the paper.
- Language
-
Englisch
- Bibliographic citation
-
Series: cemmap working paper ; No. CWP40/15
- Classification
-
Wirtschaft
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
- Subject
-
Panel data
dynamic models
non-separable heterogeneity
quantile regression
expectation-maximization
- Event
-
Geistige Schöpfung
- (who)
-
Arellano, Manuel
Bonhomme, Stéphane
- Event
-
Veröffentlichung
- (who)
-
Centre for Microdata Methods and Practice (cemmap)
- (where)
-
London
- (when)
-
2015
- DOI
-
doi:10.1920/wp.cem.2015.4015
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Arellano, Manuel
- Bonhomme, Stéphane
- Centre for Microdata Methods and Practice (cemmap)
Time of origin
- 2015