Arbeitspapier

Nonlinear panel data estimation via quantile regressions

We introduce a class of quantile regression estimators for short panels. Our framework covers static and dynamic autoregressive models, models with general predetermined regressors, and models with multiple individual effects. We use quantile regression as a flexible tool to model the relationships between outcomes, covariates, and heterogeneity. We develop an iterative simulation-based approach for estimation, which exploits the computational simplicity of ordinary quantile regression in each iteration step. Finally, an application to measure the effect of smoking during pregnancy on children's birthweights completes the paper.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP40/15

Classification
Wirtschaft
Single Equation Models; Single Variables: Panel Data Models; Spatio-temporal Models
Subject
Panel data
dynamic models
non-separable heterogeneity
quantile regression
expectation-maximization

Event
Geistige Schöpfung
(who)
Arellano, Manuel
Bonhomme, Stéphane
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2015

DOI
doi:10.1920/wp.cem.2015.4015
Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Arellano, Manuel
  • Bonhomme, Stéphane
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2015

Other Objects (12)