Arbeitspapier
Understanding the effect of measurement error on quantile regressions
The impact of measurement error in explanatory variables on quantile regression functions is investigated using a small variance approximation. The approximation shows how the error contaminated and error free quantile regression functions are related. A key factor is the distribution of the error free explanatory variable. Exact calculations probe the accuracy of the approximation. The order of the approximation error is unchanged if the density of the error free explanatory variable is replaced by the density of the error contaminated explanatory variable which is easily estimated. It is then possible to use the approximation to investigate the sensitivity of estimates to varying amounts of measurement error.
- Language
-
Englisch
- Bibliographic citation
-
Series: cemmap working paper ; No. CWP19/17
- Classification
-
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
- Subject
-
measurement error
parameter approximations
quantile regression
- Event
-
Geistige Schöpfung
- (who)
-
Chesher, Andrew
- Event
-
Veröffentlichung
- (who)
-
Centre for Microdata Methods and Practice (cemmap)
- (where)
-
London
- (when)
-
2017
- DOI
-
doi:10.1920/wp.cem.2017.1917
- Handle
- Last update
- 10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Chesher, Andrew
- Centre for Microdata Methods and Practice (cemmap)
Time of origin
- 2017