Algorithmic Allocation: Untangling Rival Considerations of Fairness in Research Management
Abstract: Marketization and quantification have become ingrained in academia over the past few decades. The trust in numbers and incentives has led to a proliferation of devices that individualize, induce, benchmark, and rank academic performance. As an instantiation of that trend, this article focuses on the establishment and contestation of 'algorithmic allocation' at a Dutch university medical centre. Algorithmic allocation is a form of data-driven automated reasoning that enables university administrators to calculate the overall research budget of a department without engaging in a detailed qualitative assessment of the current content and future potential of its research activities. It consists of a range of quantitative performance indicators covering scientific publications, peer recognition, PhD supervision, and grant acquisition. Drawing on semi-structured interviews, focus groups, and document analysis, we contrast the attempt to build a rationale for algorithmic allocation - citi
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Notes
-
Veröffentlichungsversion
begutachtet (peer reviewed)
In: Politics and Governance ; 8 (2020) 2 ; 15-25
- Event
-
Veröffentlichung
- (where)
-
Mannheim
- (who)
-
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
- (when)
-
2020
- Creator
-
Dix, Guus
Kaltenbrunner, Wolfgang
Tijdink, Joeri
Valkenburg, Govert
Rijcke, Sarah de
- DOI
-
10.17645/pag.v8i2.2594
- URN
-
urn:nbn:de:101:1-2022102511183737426844
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
25.03.2025, 1:43 PM CET
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Dix, Guus
- Kaltenbrunner, Wolfgang
- Tijdink, Joeri
- Valkenburg, Govert
- Rijcke, Sarah de
- SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
Time of origin
- 2020