Algorithmic Allocation: Untangling Rival Considerations of Fairness in Research Management
Abstract: Marketization and quantification have become ingrained in academia over the past few decades. The trust in numbers and incentives has led to a proliferation of devices that individualize, induce, benchmark, and rank academic performance. As an instantiation of that trend, this article focuses on the establishment and contestation of 'algorithmic allocation' at a Dutch university medical centre. Algorithmic allocation is a form of data-driven automated reasoning that enables university administrators to calculate the overall research budget of a department without engaging in a detailed qualitative assessment of the current content and future potential of its research activities. It consists of a range of quantitative performance indicators covering scientific publications, peer recognition, PhD supervision, and grant acquisition. Drawing on semi-structured interviews, focus groups, and document analysis, we contrast the attempt to build a rationale for algorithmic allocation - citi
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Veröffentlichungsversion
begutachtet (peer reviewed)
In: Politics and Governance ; 8 (2020) 2 ; 15-25
- Ereignis
-
Veröffentlichung
- (wo)
-
Mannheim
- (wer)
-
SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
- (wann)
-
2020
- Urheber
-
Dix, Guus
Kaltenbrunner, Wolfgang
Tijdink, Joeri
Valkenburg, Govert
Rijcke, Sarah de
- DOI
-
10.17645/pag.v8i2.2594
- URN
-
urn:nbn:de:101:1-2022102511183737426844
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
25.03.2025, 13:43 MEZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Dix, Guus
- Kaltenbrunner, Wolfgang
- Tijdink, Joeri
- Valkenburg, Govert
- Rijcke, Sarah de
- SSOAR, GESIS – Leibniz-Institut für Sozialwissenschaften e.V.
Entstanden
- 2020