Arbeitspapier

Importance sampling for backward SDEs

In this paper we explain how the importance sampling technique can be generalized from simulating expectations to computing the initial value of backward SDEs with Lipschitz continuous driver. By means of a measure transformation we introduce a variance reduced version of the forward approximation scheme by Bender and Denk [4] for simulating backward SDEs. A fully implementable algorithm using the least-squares Monte Carlo approach is developed and its convergence is proved. The success of the generalized importance sampling is illustrated by numerical examples in the context of Asian option pricing under different interest rates for borrowing and lending.

Language
Englisch

Bibliographic citation
Series: CoFE Discussion Paper ; No. 08/11

Classification
Wirtschaft
Subject
BSDE
Numerics
Monte Carlo simulation
Variance reduction

Event
Geistige Schöpfung
(who)
Bendera, Christian
Moseler, Thilo
Event
Veröffentlichung
(who)
University of Konstanz, Center of Finance and Econometrics (CoFE)
(where)
Konstanz
(when)
2008

Handle
Last update
10.03.2025, 11:46 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Bendera, Christian
  • Moseler, Thilo
  • University of Konstanz, Center of Finance and Econometrics (CoFE)

Time of origin

  • 2008

Other Objects (12)