Arbeitspapier
Improving MCMC Using Efficient Importance Sampling
This paper develops a systematic Markov Chain Monte Carlo (MCMC) framework based upon Efficient Importance Sampling (EIS) which can be used for the analysis of a wide range of econometric models involving integrals without an analytical solution. EIS is a simple, generic and yet accurate Monte-Carlo integration procedure based on sampling densities which are chosen to be global approximations to the integrand. By embedding EIS within MCMC procedures based on Metropolis-Hastings (MH) one can significantly improve their numerical properties, essentially by providing a fully automated selection of critical MCMC components such as auxiliary sampling densities, normalizing constants and starting values. The potential of this integrated MCMC-EIS approach is illustrated with simple univariate integration problems and with the Bayesian posterior analysis of stochastic volatility models and stationary autoregressive processes.
- Language
-
Englisch
- Bibliographic citation
-
Series: Economics Working Paper ; No. 2006-05
- Classification
-
Wirtschaft
- Subject
-
Autoregressive models
Bayesian posterior analysis
Dynamic latent variables
Gibbs sampling
Metropolis Hastings
Stochastic volatility
Monte-Carlo-Methode
Stochastischer Prozess
Stichprobenverfahren
Theorie
- Event
-
Geistige Schöpfung
- (who)
-
Liesenfeld, Roman
Richard, Jean-François
- Event
-
Veröffentlichung
- (who)
-
Kiel University, Department of Economics
- (where)
-
Kiel
- (when)
-
2006
- Handle
- Last update
-
10.03.2025, 11:44 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Liesenfeld, Roman
- Richard, Jean-François
- Kiel University, Department of Economics
Time of origin
- 2006