Arbeitspapier

Predictive inference for integrated volatility

In recent years, numerous volatility-based derivative products have been engineered. This has led to interest in constructing conditional predictive densities and confidence intervals for integrated volatility. In this paper, we propose nonparametric estimators of the aforementioned quantities, based on model free volatility estimators. We establish consistency and asymptotic normality for the feasible estimators and study their finite sample properties through a Monte Carlo experiment. Finally, using data from the New York Stock Exchange, we provide an empirical application to volatility directional predictability.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 2011-09

Classification
Wirtschaft
Subject
diffusions
realized volatility measures
kernels
microstructure noise
jumps
prediction
Börsenkurs
Volatilität
Zeitreihenanalyse
Inferenzstatistik
Nichtparametrisches Verfahren
Theorie

Event
Geistige Schöpfung
(who)
Corradi, Valentina
Distaso, Walter
Swanson, Norman R.
Event
Veröffentlichung
(who)
Rutgers University, Department of Economics
(where)
New Brunswick, NJ
(when)
2011

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Corradi, Valentina
  • Distaso, Walter
  • Swanson, Norman R.
  • Rutgers University, Department of Economics

Time of origin

  • 2011

Other Objects (12)