Arbeitspapier

A Fractionally Integrated Wishart Stochastic Volatility Model

There has recently been growing interest in modeling and estimating alternative continuous time multivariate stochastic volatility models. We propose a continuous timefractionally integrated Wishart stochastic volatility (FIWSV) process. We derive the conditional Laplace transform of the FIWSV model in order to obtain a closed form expression of moments. We conduct a two-step procedure, namely estimating the parameter of fractional integration via log-periodgram regression in the first step, and estimating the remaining parameters via the generalized method of moments in the second step. Monte Carlo results for the procedure shows reasonable performances in finite samples. The empirical results for the bivariate data of the S&P 500 and FTSE100 indexes show that the data favor the new FIWSV processes rather than one-factor and two-factor models of Wishart autoregressive processes for the covariance structure.

Language
Englisch

Bibliographic citation
Series: Tinbergen Institute Discussion Paper ; No. 13-025/III

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Model Construction and Estimation
Contingent Pricing; Futures Pricing; option pricing
Subject
Diffusion process
Multivariate stochastic volatility
Long memory
Fractional Brownian motion
Generalized method of moments
Stochastischer Prozess
Volatilität
Momentenmethode
Theorie

Event
Geistige Schöpfung
(who)
Asai, Manabu
McAleer, Michael
Event
Veröffentlichung
(who)
Tinbergen Institute
(where)
Amsterdam and Rotterdam
(when)
2013

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Asai, Manabu
  • McAleer, Michael
  • Tinbergen Institute

Time of origin

  • 2013

Other Objects (12)