Arbeitspapier

Realized Stochastic Volatility Models with Generalized Gegenbauer Long Memory

In recent years fractionally differenced processes have received a great deal of attention due to their flexibility in financial applications with long memory. In this paper, we develop a new realized stochastic volatility (RSV) model with general Gegenbauer long memory (GGLM), which encompasses a new RSV model with seasonal long memory (SLM). The RSV model uses the information from returns and realized volatility measures simultaneously. The long memory structure of both models can describe unbounded peaks apart from the origin in the power spectrum. For estimating the RSV-GGLM model, we suggest estimating the location parameters for the peaks of the power spectrum in the first step, and the remaining parameters based on the Whittle likelihood in the second step. We conduct Monte Carlo experiments for investigating the finite sample properties of the estimators, with a quasi-likelihood ratio test of RSV-SLM model against the RSV-GGLM model. We apply the RSV-GGLM and RSV-SLM model to three stock market indices. The estimation and forecasting results indicate the adequacy of considering general long memory.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 17-105/III

Klassifikation
Wirtschaft
Methodological Issues: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Financial Econometrics
Thema
Stochastic Volatility
Realized Volatility Measure
Long Memory
Gegenbauer Polynomial
Seasonality
Whittle Likelihood

Ereignis
Geistige Schöpfung
(wer)
Asai, Manabu
McAleer, Michael
Peiris, Shelton
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2017

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Asai, Manabu
  • McAleer, Michael
  • Peiris, Shelton
  • Tinbergen Institute

Entstanden

  • 2017

Ähnliche Objekte (12)