Arbeitspapier

Forecasting Realized Volatility with Linear and Nonlinear Models

In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed in this paper.

Language
Englisch

Bibliographic citation
Series: Texto para discussão ; No. 568

Classification
Wirtschaft
Subject
Financial econometrics
volatility forecasting
neural networks
nonlinear models
realized volatility
bagging.
Volatilität
Prognoseverfahren
Nichtlineare Regression
Neuronale Netze
Algorithmus

Event
Geistige Schöpfung
(who)
McAleer, Michael
Medeiros, Marcelo C.
Event
Veröffentlichung
(who)
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Economia
(where)
Rio de Janeiro
(when)
2010

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • McAleer, Michael
  • Medeiros, Marcelo C.
  • Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Economia

Time of origin

  • 2010

Other Objects (12)