Arbeitspapier

Forecasting Realized Volatility with Linear and Nonlinear Models

In this paper we consider a nonlinear model based on neural networks as well as linear models to forecast the daily volatility of the S&P 500 and FTSE 100 indexes. As a proxy for daily volatility, we consider a consistent and unbiased estimator of the integrated volatility that is computed from high frequency intra-day returns. We also consider a simple algorithm based on bagging (bootstrap aggregation) in order to specify the models analyzed in this paper.

Sprache
Englisch

Erschienen in
Series: Texto para discussão ; No. 568

Klassifikation
Wirtschaft
Thema
Financial econometrics
volatility forecasting
neural networks
nonlinear models
realized volatility
bagging.
Volatilität
Prognoseverfahren
Nichtlineare Regression
Neuronale Netze
Algorithmus

Ereignis
Geistige Schöpfung
(wer)
McAleer, Michael
Medeiros, Marcelo C.
Ereignis
Veröffentlichung
(wer)
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Economia
(wo)
Rio de Janeiro
(wann)
2010

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • McAleer, Michael
  • Medeiros, Marcelo C.
  • Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Departamento de Economia

Entstanden

  • 2010

Ähnliche Objekte (12)