Arbeitspapier
Bayesian inference in a stochastic volatility Nelson-Siegel Model
In this paper, we develop and apply Bayesian inference for an extended Nelson-Siegel (1987) term structure model capturing interest rate risk. The so-called Stochastic Volatility Nelson-Siegel (SVNS) model allows for stochastic volatility in the underlying yield factors. We propose a Markov chain Monte Carlo (MCMC) algorithm to efficiently estimate the SVNS model using simulation-based inference. Applying the SVNS model to monthly U.S. zero-coupon yields, we find significant evidence for time-varying volatility in the yield factors. This is mostly true for the level and slope volatility revealing also the highest persistence. It turns out that the inclusion of stochastic volatility improves the model's goodness-of-fit and clearly reduces the forecasting uncertainty particularly in low-volatility periods. The proposed approach is shown to work efficiently and is easily adapted to alternative specifications of dynamic factor models revealing (multivariate) stochastic volatility.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 649 Discussion Paper ; No. 2010,004
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
- Thema
-
term structure of interest rates
stochastic volatility
dynamic factor model
Markov chain Monte Carlo
Zinsstruktur
Volatilität
Stochastischer Prozess
Schätztheorie
Bayes-Statistik
Monte-Carlo-Methode
Theorie
Schätzung
Zero Bond
USA
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Hautsch, Nikolaus
Yang, Fuyu
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (wo)
-
Berlin
- (wann)
-
2010
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Hautsch, Nikolaus
- Yang, Fuyu
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Entstanden
- 2010