Arbeitspapier

Bayesian inference in a stochastic volatility Nelson-Siegel Model

In this paper, we develop and apply Bayesian inference for an extended Nelson-Siegel (1987) term structure model capturing interest rate risk. The so-called Stochastic Volatility Nelson-Siegel (SVNS) model allows for stochastic volatility in the underlying yield factors. We propose a Markov chain Monte Carlo (MCMC) algorithm to efficiently estimate the SVNS model using simulation-based inference. Applying the SVNS model to monthly U.S. zero-coupon yields, we find significant evidence for time-varying volatility in the yield factors. This is mostly true for the level and slope volatility revealing also the highest persistence. It turns out that the inclusion of stochastic volatility improves the model's goodness-of-fit and clearly reduces the forecasting uncertainty particularly in low-volatility periods. The proposed approach is shown to work efficiently and is easily adapted to alternative specifications of dynamic factor models revealing (multivariate) stochastic volatility.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2010,004

Klassifikation
Wirtschaft
Bayesian Analysis: General
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Thema
term structure of interest rates
stochastic volatility
dynamic factor model
Markov chain Monte Carlo
Zinsstruktur
Volatilität
Stochastischer Prozess
Schätztheorie
Bayes-Statistik
Monte-Carlo-Methode
Theorie
Schätzung
Zero Bond
USA

Ereignis
Geistige Schöpfung
(wer)
Hautsch, Nikolaus
Yang, Fuyu
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2010

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hautsch, Nikolaus
  • Yang, Fuyu
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2010

Ähnliche Objekte (12)