Artikel

Robust Bayesian inference in stochastic frontier models

We use the concept of coarsened posteriors to provide robust Bayesian inference via coarsening in order to robustify posteriors arising from stochastic frontier models. These posteriors arise from tempered versions of the likelihood when at most a pre-specified amount of data is used, and are robust to changes in the model. Specifically, we examine robustness to changes in the distribution of the composed error in the stochastic frontier model (SFM). Moreover, coarsening is a form of regularization, reduces overfitting and makes inferences less sensitive to model choice. The new techniques are illustrated using artificial data as well as in a substantive application to large U.S. banks.

Sprache
Englisch

Erschienen in
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 12 ; Year: 2019 ; Issue: 4 ; Pages: 1-9 ; Basel: MDPI

Klassifikation
Wirtschaft
Thema
bayesian analysis
productivity and efficiency
robustness
stochastic frontier models

Ereignis
Geistige Schöpfung
(wer)
Tsionas, Efthymios G.
Ereignis
Veröffentlichung
(wer)
MDPI
(wo)
Basel
(wann)
2019

DOI
doi:10.3390/jrfm12040183
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Tsionas, Efthymios G.
  • MDPI

Entstanden

  • 2019

Ähnliche Objekte (12)