Artikel

Robust Bayesian inference in stochastic frontier models

We use the concept of coarsened posteriors to provide robust Bayesian inference via coarsening in order to robustify posteriors arising from stochastic frontier models. These posteriors arise from tempered versions of the likelihood when at most a pre-specified amount of data is used, and are robust to changes in the model. Specifically, we examine robustness to changes in the distribution of the composed error in the stochastic frontier model (SFM). Moreover, coarsening is a form of regularization, reduces overfitting and makes inferences less sensitive to model choice. The new techniques are illustrated using artificial data as well as in a substantive application to large U.S. banks.

Language
Englisch

Bibliographic citation
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 12 ; Year: 2019 ; Issue: 4 ; Pages: 1-9 ; Basel: MDPI

Classification
Wirtschaft
Subject
bayesian analysis
productivity and efficiency
robustness
stochastic frontier models

Event
Geistige Schöpfung
(who)
Tsionas, Efthymios G.
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2019

DOI
doi:10.3390/jrfm12040183
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Tsionas, Efthymios G.
  • MDPI

Time of origin

  • 2019

Other Objects (12)