Arbeitspapier

Robust Bayesian inference for set-identified models

This paper reconciles the asymptotic disagreement between Bayesian and frequentist inference in set-identified models by adopting a multiple-prior (robust) Bayesian approach. We propose new tools for Bayesian inference in set-identified models and show that they have a well-defined posterior interpretation infinite samples and are asymptotically valid from the frequentist perspective. The main idea is to construct a prior class that removes the source of the disagreement: the need to specify an unrevisable prior for the structural parameter given the reduced-form parameter. The corresponding class of posteriors can be summarized by reporting the 'posterior lower and upper probabilities' of a given event and/or the 'set of posterior means' and the associated 'robust credible region'. We show that the set of posterior means is a consistent estimator of the true identi?ed set and the robust credible region has the correct frequentist asymptotic coverage for the true identified set if it is convex. Otherwise, the method provides posterior inference about the convex hull of the identified set. For impulse-response analysis in set-identified Structural Vector Autoregressions, the new tools can be used to overcome or quantify the sensitivity of standard Bayesian inference to the choice of an unrevisable prior.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP12/20

Klassifikation
Wirtschaft
Thema
multiple priors
identified set
credible region
consistency
asymptotic coverage
identifying restrictions
impulse-response analysis

Ereignis
Geistige Schöpfung
(wer)
Giacomini, Raffaella
Kitagawa, Toru
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2020

DOI
doi:10.1920/wp.cem.2020.1220
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Giacomini, Raffaella
  • Kitagawa, Toru
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2020

Ähnliche Objekte (12)