Arbeitspapier

Discrete-time stochastic volatility models and MCMC-based statistical inference

In this paper, we review the most common specifications of discrete-time stochastic volatility (SV) models and illustrate the major principles of corresponding Markov Chain Monte Carlo (MCMC) based statistical inference. We provide a hands-on ap proach which is easily implemented in empirical applications and financial practice and can be straightforwardly extended in various directions. We illustrate empirical results based on different SV specifications using returns on stock indices and foreign exchange rates.

Language
Englisch

Bibliographic citation
Series: SFB 649 Discussion Paper ; No. 2008,063

Classification
Wirtschaft
Statistical Simulation Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Asset Pricing; Trading Volume; Bond Interest Rates
Subject
Stochastic volatility
Markov chain Monte Carlo
Metropolis-Hastings algorithm Jump Processes
Kapitalertrag
Volatilität
Stochastischer Prozess
Markovscher Prozess
Monte-Carlo-Methode
Bayes-Statistik
Theorie
Schätzung
Aktienindex
Wechselkurs
Deutschland
USA

Event
Geistige Schöpfung
(who)
Hautsch, Nikolaus
Ou, Yangguoyi
Event
Veröffentlichung
(who)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(where)
Berlin
(when)
2008

Handle
Last update
10.03.2025, 11:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Hautsch, Nikolaus
  • Ou, Yangguoyi
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Time of origin

  • 2008

Other Objects (12)