Artikel

A Bayesian semiparametric realized stochastic volatility model

This paper proposes a semiparametric realized stochastic volatility model by integrating the parametric stochastic volatility model utilizing realized volatility information and the Bayesian nonparametric framework. The flexible framework offered by Bayesian nonparametric mixtures not only improves the fitting of asymmetric and leptokurtic densities of asset returns and logarithmic realized volatility but also enables flexible adjustments for estimation bias in realized volatility. Applications to equity data show that the proposed model offers superior density forecasts for returns and improved estimates of parameters and latent volatility compared with existing alternatives.

Language
Englisch

Bibliographic citation
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 14 ; Year: 2021 ; Issue: 12 ; Pages: 1-22 ; Basel: MDPI

Classification
Wirtschaft
Subject
stochastic volatility
Dirichlet process mixture
realized volatility
density forecast

Event
Geistige Schöpfung
(who)
Liu, Jia
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2021

DOI
doi:10.3390/jrfm14120617
Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Liu, Jia
  • MDPI

Time of origin

  • 2021

Other Objects (12)