Artikel
A Bayesian semiparametric realized stochastic volatility model
This paper proposes a semiparametric realized stochastic volatility model by integrating the parametric stochastic volatility model utilizing realized volatility information and the Bayesian nonparametric framework. The flexible framework offered by Bayesian nonparametric mixtures not only improves the fitting of asymmetric and leptokurtic densities of asset returns and logarithmic realized volatility but also enables flexible adjustments for estimation bias in realized volatility. Applications to equity data show that the proposed model offers superior density forecasts for returns and improved estimates of parameters and latent volatility compared with existing alternatives.
- Language
-
Englisch
- Bibliographic citation
-
Journal: Journal of Risk and Financial Management ; ISSN: 1911-8074 ; Volume: 14 ; Year: 2021 ; Issue: 12 ; Pages: 1-22 ; Basel: MDPI
- Classification
-
Wirtschaft
- Subject
-
stochastic volatility
Dirichlet process mixture
realized volatility
density forecast
- Event
-
Geistige Schöpfung
- (who)
-
Liu, Jia
- Event
-
Veröffentlichung
- (who)
-
MDPI
- (where)
-
Basel
- (when)
-
2021
- DOI
-
doi:10.3390/jrfm14120617
- Handle
- Last update
-
10.03.2025, 11:41 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Artikel
Associated
- Liu, Jia
- MDPI
Time of origin
- 2021