Arbeitspapier

Bayesian semiparametric stochastic volatility modeling

This paper extends the existing fully parametric Bayesian literature on stochastic volatility to allow for more general return distributions. Instead of specifying a particular distribution for the return innovation, we use nonparametric Bayesian methods to flexibly model the skewness and kurtosis of the distribution while continuing to model the dynamics of volatility with a parametric structure. Our semiparametric Bayesian approach provides a full characterization of parametric and distributional uncertainty. We present a Markov chain Monte Carlo sampling approach to estimation with theoretical and computational issues for simulation from the posterior predictive distributions. The new model is assessed based on simulation evidence, an empirical example, and comparison to parametric models.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2008-15

Klassifikation
Wirtschaft
Bayesian Analysis: General
Semiparametric and Nonparametric Methods: General
Forecasting Models; Simulation Methods
Thema
Bayesian nonparametrics
Dirichlet process mixture prior
Markov chain Monte Carlo
mixture models
stochastic volatility

Ereignis
Geistige Schöpfung
(wer)
Jensen, Mark J.
Maheu, John M.
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of Atlanta
(wo)
Atlanta, GA
(wann)
2008

Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Jensen, Mark J.
  • Maheu, John M.
  • Federal Reserve Bank of Atlanta

Entstanden

  • 2008

Ähnliche Objekte (12)