Arbeitspapier
Bayesian semiparametric multivariate GARCH modeling
This paper proposes a Bayesian nonparametric modeling approach for the return distribution in multivariate GARCH models. In contrast to the parametric literature, the return distribution can display general forms of asymmetry and thick tails. An infinite mixture of multivariate normals is given a flexible Dirichlet process prior. The GARCH functional form enters into each of the components of this mixture. We discuss conjugate methods that allow for scale mixtures and nonconjugate methods, which provide mixing over both the location and scale of the normal components. MCMC methods are introduced for posterior simulation and computation of the predictive density. Bayes factors and density forecasts with comparisons to GARCH models with Student-t innovations demonstrate the gains from our flexible modeling approach.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 2012-9
- Klassifikation
-
Wirtschaft
Bayesian Analysis: General
Semiparametric and Nonparametric Methods: General
Forecasting Models; Simulation Methods
Financial Econometrics
- Thema
-
Bayesian nonparametrics
cumulative Bayes factor
Dirichlet process mixture
forecasting
infinite mixture model
MCMC
slice sampler
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Jensen, Mark J.
Maheu, John M.
- Ereignis
-
Veröffentlichung
- (wer)
-
Federal Reserve Bank of Atlanta
- (wo)
-
Atlanta, GA
- (wann)
-
2012
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:44 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Jensen, Mark J.
- Maheu, John M.
- Federal Reserve Bank of Atlanta
Entstanden
- 2012