Arbeitspapier

Bayesian semiparametric multivariate GARCH modeling

This paper proposes a Bayesian nonparametric modeling approach for the return distribution in multivariate GARCH models. In contrast to the parametric literature, the return distribution can display general forms of asymmetry and thick tails. An infinite mixture of multivariate normals is given a flexible Dirichlet process prior. The GARCH functional form enters into each of the components of this mixture. We discuss conjugate methods that allow for scale mixtures and nonconjugate methods, which provide mixing over both the location and scale of the normal components. MCMC methods are introduced for posterior simulation and computation of the predictive density. Bayes factors and density forecasts with comparisons to GARCH models with Student-t innovations demonstrate the gains from our flexible modeling approach.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2012-9

Klassifikation
Wirtschaft
Bayesian Analysis: General
Semiparametric and Nonparametric Methods: General
Forecasting Models; Simulation Methods
Financial Econometrics
Thema
Bayesian nonparametrics
cumulative Bayes factor
Dirichlet process mixture
forecasting
infinite mixture model
MCMC
slice sampler

Ereignis
Geistige Schöpfung
(wer)
Jensen, Mark J.
Maheu, John M.
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of Atlanta
(wo)
Atlanta, GA
(wann)
2012

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Jensen, Mark J.
  • Maheu, John M.
  • Federal Reserve Bank of Atlanta

Entstanden

  • 2012

Ähnliche Objekte (12)