Arbeitspapier

Bayesian semiparametric stochastic volatility modeling

This paper extends the existing fully parametric Bayesian literature on stochastic volatility to allow for more general return distributions. Instead of specifying a particular distribution for the return innovation, we use nonparametric Bayesian methods to flexibly model the skewness and kurtosis of the distribution while continuing to model the dynamics of volatility with a parametric structure. Our semiparametric Bayesian approach provides a full characterization of parametric and distributional uncertainty. We present a Markov chain Monte Carlo sampling approach to estimation with theoretical and computational issues for simulation from the posterior predictive distributions. The new model is assessed based on simulation evidence, an empirical example, and comparison to parametric models.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 2008-15

Classification
Wirtschaft
Bayesian Analysis: General
Semiparametric and Nonparametric Methods: General
Forecasting Models; Simulation Methods
Subject
Bayesian nonparametrics
Dirichlet process mixture prior
Markov chain Monte Carlo
mixture models
stochastic volatility

Event
Geistige Schöpfung
(who)
Jensen, Mark J.
Maheu, John M.
Event
Veröffentlichung
(who)
Federal Reserve Bank of Atlanta
(where)
Atlanta, GA
(when)
2008

Handle
Last update
10.03.2025, 11:41 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Jensen, Mark J.
  • Maheu, John M.
  • Federal Reserve Bank of Atlanta

Time of origin

  • 2008

Other Objects (12)