Arbeitspapier

Robust estimation of nonstationary, fractionally integrated, autoregressive, stochastic volatility

Empirical volatility studies have discovered nonstationary, long-memory dynamics in the volatility of the stock market and foreign exchange rates. This highly persistent, infinite variance - but still mean reverting - behavior is commonly found with nonparametric estimates of the fractional differencing parameter d, for financial volatility. In this paper, a fully parametric Bayesian estimator, robust to nonstationarity, is designed for the fractionally integrated, autoregressive, stochastic volatility (SV-FIAR) model. Joint estimates of the autoregressive and fractional differencing parameters of volatility are found via a Bayesian, Markov chain Monte Carlo (MCMC) sampler. Like Jensen (2004), this MCMC algorithm relies on the wavelet representation of the log-squared return series. Unlike the Fourier transform, where a time series must be a stationary process to have a spectral density function, wavelets can represent both stationary and nonstationary processes. As long as the wavelet has a sufficient number of vanishing moments, this paper's MCMC sampler will be robust to nonstationary volatility and capable of generating the posterior distribution of the autoregressive and long-memory parameters of the SV-FIAR model regardless of the value of d. Using simulated and empirical stock market return data, we find our Bayesian estimator producing reliable point estimates of the autoregressive and fractional differencing parameters with reasonable Bayesian confidence intervals for either stationary or nonstationary SV-FIAR models.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2015-12

Klassifikation
Wirtschaft
Bayesian Analysis: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Thema
Bayes
infinite variance
long-memory
Markov chain Monte Carlo
mean-reverting
wavelets

Ereignis
Geistige Schöpfung
(wer)
Jensen, Mark J.
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of Atlanta
(wo)
Atlanta, GA
(wann)
2015

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Jensen, Mark J.
  • Federal Reserve Bank of Atlanta

Entstanden

  • 2015

Ähnliche Objekte (12)