Arbeitspapier

Sparse trend estimation

The low-frequency movements of many economic variables play a prominent role in policy analysis and decision-making. We develop a robust estimation approach for these slow-moving trend processes, which is guided by a judicious choice of priors and is characterized by sparsity. We present some novel stylized facts from longer-run survey expectations that inform the structure of the estimation procedure. The general version of the proposed Bayesian estimator with a slab-and-spike prior accounts explicitly for cyclical dynamics. The practical implementation of the method is discussed in detail, and we show that it performs well in simulations against some relevant benchmarks. We report empirical estimates of trend growth for U.S. output (and its components), productivity, and annual mean temperature. These estimates allow policymakers to assess shortfalls and overshoots in these variables from their economic and ecological targets.

Sprache
Englisch

Erschienen in
Series: Staff Report ; No. 1049

Klassifikation
Wirtschaft
Estimation: General
Multiple or Simultaneous Equation Models; Multiple Variables: General
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Macroeconomics: Consumption, Saving, Production, Employment, and Investment: Forecasting and Simulation: Models and Applications
Business Fluctuations; Cycles
Thema
slow-moving trends
sparsity
Bayesian inference
latent variable models
trend output growth

Ereignis
Geistige Schöpfung
(wer)
Crump, Richard K.
Gospodinov, Nikolaj
Wieman, Hunter
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of New York
(wo)
New York, NY
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Crump, Richard K.
  • Gospodinov, Nikolaj
  • Wieman, Hunter
  • Federal Reserve Bank of New York

Entstanden

  • 2023

Ähnliche Objekte (12)