Arbeitspapier

Sparse and Robust Factor Modelling

Factor construction methods are widely used to summarize a large panel of variables by means of a relatively small number of representative factors. We propose a novel factor construction procedure that enjoys the properties of robustness to outliers and of sparsity; that is, having relatively few nonzero factor loadings. Compared to more traditional factor construction methods, we find that this procedure leads to better interpretable factors and to a favorable forecasting performance, both in a Monte Carlo experiment and in two empirical applications to large data sets, one from macroeconomics and one from microeconomics.

Sprache
Englisch

Erschienen in
Series: Tinbergen Institute Discussion Paper ; No. 11-122/4

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Model Construction and Estimation
Forecasting Models; Simulation Methods
Thema
dimension reduction
forecasting
outliers
regularization

Ereignis
Geistige Schöpfung
(wer)
Croux, Christophe
Exterkate, Peter
Ereignis
Veröffentlichung
(wer)
Tinbergen Institute
(wo)
Amsterdam and Rotterdam
(wann)
2011

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Croux, Christophe
  • Exterkate, Peter
  • Tinbergen Institute

Entstanden

  • 2011

Ähnliche Objekte (12)