Arbeitspapier

Factorisable sparse tail event curves

In this paper, we propose a multivariate quantile regression method which enables localized analysis on conditional quantiles and global comovement analysis on conditional ranges for high-dimensional data. The proposed method, hereafter referred to as FActorisable Sparse Tail Event Curves, or FASTEC for short, exploits the potential factor structure of multivariate conditional quantiles through nuclear norm regularization and is particularly suitable for dealing with extreme quantiles. We study both theoretical properties and computational aspects of the estimating procedure for FASTEC. In particular, we derive nonasymptotic oracle bounds for the estimation error, and develope an efficient proximal gradient algorithm for the non-smooth optimization problem incurred in our estimating procedure. Merits of the proposed methodology are further demonstrated through applications to Conditional Autoregressive Value-at-Risk (CAViaR) (Engle and Manganelli; 2004), and a Chinese temperature dataset.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2015-034

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Large Data Sets: Modeling and Analysis
Computational Techniques; Simulation Modeling
Financial Forecasting and Simulation
Financial Institutions and Services: General
Thema
high-dimensional data analysis
multivariate quantile regression
quantile regression
value-at-risk
nuclear norm
multi-task learning

Ereignis
Geistige Schöpfung
(wer)
Chao, Shih-Kang
Härdle, Wolfgang Karl
Yuan, Ming
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2015

Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Chao, Shih-Kang
  • Härdle, Wolfgang Karl
  • Yuan, Ming
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2015

Ähnliche Objekte (12)