Journal article | Zeitschriftenartikel

Testing the assumptions behind importance sampling

Importance sampling is used in many areas of modern econometrics to approximate unsolvable integrals. Its reliable use requires the sampler to possess a variance, for this guarantees a square root speed of convergence and asymptotic normality of the estimator of the integral. However, this assumption is seldom checked. In this paper we use extreme value theory to empirically assess the appropriateness of this assumption. Our main application is the stochastic volatility model, where importance sampling is commonly used for maximum likelihood estimation of the parameters of the model.

Testing the assumptions behind importance sampling

Urheber*in: Koopman, Siem Jan; Shephard, Neil; Creal, Drew

Free access - no reuse

Extent
Seite(n): 2-11
Language
Englisch
Notes
Status: Postprint; begutachtet (peer reviewed)

Bibliographic citation
Journal of Econometrics, 149(1)

Subject
Wirtschaft
Wirtschaftsstatistik, Ökonometrie, Wirtschaftsinformatik
Simulation

Event
Geistige Schöpfung
(who)
Koopman, Siem Jan
Shephard, Neil
Creal, Drew
Event
Veröffentlichung
(where)
Niederlande
(when)
2009

DOI
URN
urn:nbn:de:0168-ssoar-238988
Rights
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
Last update
21.06.2024, 4:26 PM CEST

Data provider

This object is provided by:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.

Object type

  • Zeitschriftenartikel

Associated

  • Koopman, Siem Jan
  • Shephard, Neil
  • Creal, Drew

Time of origin

  • 2009

Other Objects (12)